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Abstract. Imagine a graph as representing a fixture list with vertices corre-
sponding to teams and the number of edges joining u and v representing the
number of games in which u and v have to play each other. Each game ends
in a win, loss or tie and we say a vector w = (WI"", wn) is a win vector if it
represents the possible outcomes of the games, with Wi denoting the total num-
ber of games won by team í. We study combinatorial and geometric properties
of the set of win vectors and in particular we consider the problem of count-
ing them. We construct a fully polynomial randomised approximation scheme
for their number in dense graphs. To do this we prove that the convex hull of
the set of win vectors of G forms an integral polymatroid and then use volume
approximation techniques.
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1. Introduction

Let a graph G be given and imagine G as representing a fixture list with vertices
corresponding to teams and the number of edges joining u and v representing
the number of games in which u and v have to play each other. Each game
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ends in a win, loss or tie and we say a vector w = (WI, ... , wn) is a win vector
if it represents the possible outcomes of the games, with Wi denoting the total
number of games won by team í.
Win vectors are a generalisation of score vectors which arise naturally in the
study of competitions. Tournaments have long been a subject of study in com-
binatorics, see for example [15, 16], and have diverse applications in statistics,
economics and biology [14, 8, 6].
Win vectors also have applications in biology. For example, they arise when
studying populations where individuals compete for mating partners, food or
territory. In this context the underlying graph is hardly ever complete but is
usually defined by boundary conditions of the habitat in question such as its
geography or coalitions between its individuals. In addition to that, it is usually
possible that competitions between individuals do not take place at all or end in
a tie. When studying such a system biologists often face the problem of having
to decide whether observed outcomes of competitions behave randomly or have
properties which suggest that certain individuals or groups are better adapted
to their environment [11, 3, 13]. This leads naturally to the problem of having to
generate a random win vector and counting the number of possible win vectors
for a given underlying graph.
In this paper we address some of these problems. Viewed from a statistical
perspective the algorithmic problems in this paper have a similar flavour to
those addressed by Dyer et al. in [4]. Kannan et al. [9] have recently studied the
related problem of randomly generating a realising orientation for a fixed score
vector (for definitions see below) of the complete graph.
The outline of the paper is as follows. In Section 2 we give the basic definitions
and some examples. Then, in Section 3 we give our results on the combinatorial
and geometrical properties of the set of win vectors. In Section 4 we describe a
method to quickly generate win vectors almost uniformly at random for graphs
which fulfill certain denseness conditions. In Section 5 we briefly address com-
plexity theoretic questions before we describe how to use this generator in an
approximation scheme which will give good estimates of the number of win vec-
tors of those graphs.

2. Definitions and Examples

Our terminology is standard. G = (V, E) is a undirected, labelled, finite graph.
For a vertex v E V we denote by d(v) the number of edges incident to it. We call
a graph G on n vertices a-dense if for all vertices v we have that d(v) ?: lanJ
for some fixed a E (O, 1). An orientation w of G is an assignment of directions
to all edges of G. A suborientation is an orientation of a subset of the edgeset
E. For an edge e = (u, v) E E we denote by (u ---7 v) (respectively (v ---7 u)) its
directed versions. For any orientation waf G we denote by d~(v) (respectively
d~ (v)) the number of outgoing (ingoing) edges incident at vertex v. For a given
orientation w of G the score vector of w is s(w) = (d~ (vd, ... ,d~( vn)) E NV.

We let SG be the set of all score vectors of G. A win vector w E NV of G is
a vector w such that w is a score vector for at least one orientation of some
subgraph Qi = (V, El) with El ç E. Furthermore we let WG be the set of all
win vectors of G. For a vector v = (VI, ... , vn) and A ç V = [n] we define
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v(A) = ¿iEA Vi· Let G\e (respectively G/e) denote the graph obtained from G
by deleting (contracting) e E E.
We start off with some examples.

Example 1. K1,n-l' the star on n vertices.
Here we can derive an easy formula for IWK"n_,I. Going from K1,n-2 to K1,n-l

we have three choices of what to do with the new edge e when extending a win
vector from K1,n-2 to K1,n-l. Clearly, if we delete e we obtain for each win
vector of K1,n-2 a win vector of K1,n-l. If we orient e out of the new vertex
then again every win vector of K1,n-2 yields a new win vector for K1,n-l that
is where the new component is equal to one. If we orient e into the new vertex
then we only get a new win vector for K1,n-l from a score vector of K1,n-2,

since if not all edges are used then the induced graph is isomorphic to a star
K1,j,j < n - 2. But there are 2n-2 score vectors for K1,n-2. Thus we get the
recurSlOn

from which we obtain

D

Example 2. Pn, the path on n vertices.
It is not difficult to derive a recursion formula for IWPn I. We get

n

IWPn 1= IWPn_,I +L IWPn_i I
i=1

with recursion base IWp, I = 1 and IWpo I = 1. By standard generating function
techniques we get

D

Example 3. Kn, the complete graph on n vertices.
We order the win vectors according to the sum of their components r = ¿iEV Xi.
For each r, O::; r ::; n( n - 1) the nonzero entries of a win vector w of component
sum r form a partition of the integer r. If we denote by P(k, i) the number of
ways of partitioning the integer k into exactly i summands then, after accounting
for the choice of zero entries and permutations of nonzero entries we get

n(n-l) k

IWKni = L LP(k,i)i!C),
k=O i=1

Moreover, and this is a fact we shall need later, the numbers P (k, i) can be
computed in time polynomial in n by determining the respective coefficients in
the generating function

1L P(k, i)xkyi = (1 _ yx)(l _ yx2)(1 _ yx3) ... '
k,ï2°

see [23]. D
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However all these examples are very special and we believe that in general com-
puting IWGI is a hard problem.

3. Structural results

We define WG to be the convex hull of all win vectors of G, that is WG :=
conv(W G)' This convex polytope WG e lR'.~ is an integral polymatroid as we
show below. We first recall the definition of a polymatroid from [21].

Definition 1. A polymatroid P is a pair (5, r) where S, the ground set is a
non-empty finite set and r, the ground set rank function is a function: 25 ---7 lR'.+
satisfying

r(O) = O
A ç B ç 5:::} r(A) ::; r(B)
A, B ç 5:::} r(A U B) + r(A n B) ::; r(A) + r(B);

and the vectors x E lR'.t such that x(A) ::; r(A) for all A ç 5 are the independent
vectors of P.

Note that every subvector of an independent vector is independent. For the sake
of brevity, we identify the polymatroid P = (5, r) with its set of independent
vectors if the ground set is obvious from the context.
For WG we now have the following

Proposition 1. WG is the set of independent vectors of a polymatroid with
ground set V. The rank function is given by r : 2v ---7 N where r(U) is the
number of edges having at least one endpoint in U.

Proof. The function rC) can clearly be written as

r(U) = int(U) + ext(U),

where int(U) is the number of edges in the subgraph induced by U and ext(U)
is the number of edges joining U to V \ U. By ext A (U) for A ç V we denote
the number of edges joining U to A \ U.
The first two condition on r are obvious from the definition. For the submodu-
larity condition let A, B ç 5 be given. We then have

r(A U B) r(A) + r(B) - extB\A(A \ B) - extA\B(A n B)-
extB\A (A n B) - extV\(AUB) (A n B) - int(A n B)
int(A n B) + extA\B(A n B) +
extB\A (A n B) + extV\(AUB) (A n B).

r(A n B)

Substituting this into the definition above yields submodularity of r. We note
that equality holds for sets A and B when there are no edges going from A \ B
to B \ A. It remains to be shown that WG is indeed the set of independent
vectors for the polymatroid defined by r. For this let v first be a win vector
with realising orientation w. Now observe that, for A ç V, v(A) is equal to the
number of oriented edges of w which have their tail in A. Since this is less than
or equal to the number of edges incident to A we have v(A) ::; r(A) and we
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conclude that every win vector is r-independent. Since the independent vectors
of a polymatroid form a convex polytope (see Theorem 3 in [21]) we conclude
that indeed all vectors of WG are r-independent.
For the reverse inclusion now let v be an r-independent vector. We first assume
that v is a vertex of the polytope of r-independent vectors. Below, in the proof
of Proposition 3, we give a characterisation of the vertices of the independence
polytope defined by the rank function r as win vectors with an acyclic realis-
ing orientation. In particular it follows that all vertices of the polymatroid are
win vectors. Taking the convex hull now gives the identity of WG with this in-
dependence polytope. Thus WG is indeed the integral polymatroid defined by
r. D

The set of independent vectors of a polymatroid forms a convex polytope in lR'.~
which can be described as the intersection of the following halfspaces

::; r(U) for all U ç V
> O. (1)

For a polymatroid (5, r) with independent vectors P the basepolytope is the con-
vex polytope P n {LiES Xi = r(5)}. This polytope determines the polymatroid
uniquely. Clearly r(V) = lEI in the case of WG and hence we have that the
maximal, integer elements of WG are exactly the score vectors of G.

Proposition 2. The polytope WG is uniquely determined by and uniquely de-
termines the score polytope SG:= conv(5G)'

We continue with some results on the combinatorial structure of SG and WG.
First we have

Proposition 3. The vertices ofWG are exactly the set of win vectors which have
a unique realising orientation w. This orientation w is an acyclic orientation of
a subgraph GI of G which is obtained by deleting the edges with both endpoints
in U for some U ç V.

Proof. Recall from [5] that the vertices of a polymatroid P = (5, r) can be
characterised as follows:
Let B = {SI,' .. , slBI} be an ordered subset of 5 and let Bi = {SI,' .. , Si} for
O::; i ::;IBI with Ba = O. Then B generates the vertex VB given by

r(sd
r(B;) - r(Bi-d
O

for 1 < i ::;IB I
for s 'I. B.

In our particular case, we see that this win vector VB can be achieved by a
greedy orientation procedure which orients the incident edges of the vertices in
the order prescribed by B. It is not difficult to see that this orientation must
be acyclic. The claim now follows from observing that by dropping the edges
which are not incident to vertices in B, that is U = V \ B, we obtain a unique
(sub )orientation w of G which realises VB. D

From this we obtain the vertices of SG.

Corollary 1. The vertices of SG are the score vectors realised by the acyclic
orientations of G.
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Proof. Just observe that vertices of SG have modulus lEI. The corollary then
follows. D

For the edges of WG we have

Proposition 4. Two vertices ofWG are adjacent iff either they differ in exactly
one component or they have the same modulus and their realising orientations
differ in the orientation of exactly one edge.

Proof. This can be proved using the general characterisation of adjacency on
polymatroids given by Topkis [20]. D

Specialising this to maximal elements only, we have for SG

Corollary 2. Two vertices of SG are adjacent iff their realising acyclic orien-
tations differ in exactly one directed edge.

Our final result concerning the combinatorial structure of SG and WG gives a
full description of their facets.

Proposition 5. An inequality LiEU Xi ::; r(U) or Xj ?: O of Eq. (1) determines
a facet of WG iff deleting the edges with exactly one endpoint in U (respectively
those incident to j) from E increases the number of connected components of G
by one.

Proof. Since WG is the intersection of the halfspaces determined by the inequal-
ities of Eq. (1) it follows that each inequality determines a (possibly empty) face
of WG. We note that if an inequality LiEU Xi ::; r(U) holds then this fixes the
orientation of the edges of E which have exactly one endpoint in U. Thus all
score vectors for which this inequality holds will only have realisations which
agree on those edges. We are now interested in the dimension of the affine space
spanned by these score vectors. It is not difficult to see that the score vectors
of a graph with k components lie in a WI - k dimensional affine subspace of
lR'.~. Thus an inequality of Eq. (1) determines a WI - k - 1 dimensional affine
subspace iff deleting the edges with exactly one endpoint in U from E increases
the number of connected components of G by one. D

Specialising to SG we obtain the following combinatorial description of its facets.

Corollary 3. Let e be a cut of G whose removal disconnects a connected com-
ponent of G into exactly two parts VI and V2. Let F--+ (respectively Ft- ) be the
set of score vectors realised by orientations which have the edges of e directed
from VI to V2 (respectively from V2 to VI). Then conv(F--+) and conv(Ft-) are
two facets of SG. Furthermore every facet of SG can be described by such a cut
C.

Similar but more complicated results hold for the k-faces of SG.
The results above give a relatively detailed picture of the combinatorial structure
of SG and WG. Our main interest in WG and SG is because of their integer lattice
properties. We are going to explore this next. We state first

Proposition 6. The set all integer points in WG is exactly the set W G of win
vectors.
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Proof. It is obvious from the definition that WG e WG. For the reverse inlusion
let w be an integer point in WG. We need to construct a (sub )orientation of G
which realises w. From G = (V, E) we construct a capacitated, directed graph
Fw = (S UV U{s, i}, El). The vertex set consists of V, two distinct new vertices
s and i, and the set S which consists of vertices Ve which are in one-to-one
correspondence with the edges e E E of G. The edgeset El is constructed from
E as follows. For every e = (u, v) E E we have two directed edges (ve ---7 u) and
(ve ---7 v) of capacity 1 in El. We call these edges type 1 edges. To this we add for
each Ve E S the edge (s ---7 Ve) of capacity 1 and for each V E V the edge (v ---7 i)
of capacity Wv. These are type 2 edges. An integer s-i-flow in Fw corresponds
now in a natural way to an orientation of G and a flow of capacity w(E) gives a
realising orientation of w. To complete the proof, we need to show that there is
no edgecut e ç El in Fw whose capacity is less than w(E). By the Max-Flow
Min-Cut Theorem we are then guaranteed to find a flow of capacity w(E) and
thus have a realising orientation for w.
Assume e is a minimal minimum cut in Fw. Without loss of generality we can
assume that e does not contain any type 1 edge. For if e contained (ve ---7 u)
which disconnects the path (s ---7 VeHVe ---7 uHu ---7 i) then we could replace it by
the edge (s ---7 ve) which has the same capacity and disconnects this path as well.
Thus e consists only of type 2 edges. If e consists solely of edges incident to
either s or i then we have lEI?: w(E) for C's capacity in the first case and w(E)
in the latter. Hence the claim would follow for these two cases. So assume finally
that e does not contain all edges incident to i and let (Ul ---7 i), ... , (Ui ---7 i) be
the edges of Fw incident to i and not in C. Let U = Udud. All the paths from
s to i through these edges have to have at least one edge in C. Since e contains
only type 2 edges it follows that for each Ui E U and all edges e incident to Ui in
G the edge (s ---7 ve) (which has capacity one) of Fw must be in C. But there are
r(U) ?: w(U) of those edges. Accounting for the remaining edges of e which are
incident to i and have capacity Wv we conclude that the capacity of e is larger
than or equal to w(E) in this case, too.
Finally we remark that constructing an orientation for w of G by finding a
maximum s-i-flow in Fw can be done by standard techniques in polynomial
time. D

We now turn to the basepolytape SG. Somewhat surprisingly there is a bijection
between the integer points of SG and the forests of G. This seems to have been
noticed first by Stanley in [19]where he attributes the original idea to Zaslavsky.

Proposition 7. The number of score vectors equals the number of forests of G.

Kleitman and Winston [10] give a proof of this result using a depth-first-search
algorithm to construct a bijection which is dependent on an a priori fixed or-
der. A conceptually simpler proof can be given based on Tutte-Grothendieck
invariants.
Turning to the volume of SG, it is easy to check that if G has k components
then SG is a WI - k dimensional convex polytope in lR'.~. The following is a
consequence of SG being a unimodular zonotope, see [18] and a general formula
for the volume of zonotopes, see [17].

Proposition 8. If G is connected then the relative volume vollVl-1 (SG) of SG
equals the number of spanning trees of G.
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We do not know of any similar results for IWGI or have any interpretation of
WG's volume. We can however give some inequalities. To derive them we use the
concept of polymatroid duality which is in many respects analogous to matroid
duality.

We sayeE lR'.~ bounds P e R~ iff e ?: x for all x E P. For a polymatroid
(S, r) with independence polytope P and any vector e E lR'.t which bounds P
we define

rC(A) := e(A) + r(S \ A) - r(S) for A e S.

It is routine to check that rC satisfies the conditions of Definition 1. We call
(S, rC) the e-dual of (S, r) and denote its independence polytope by PC. The
vector rank of x E Rt in (S, r) is defined by

Ilxll := min{ x(A) + r(S \ An
ACS

and we say that x is a spanning vector of (S, r) iff Ilxll = r(S). We will use the
following result of [21].

Lemma 1. x E pc iff e - x is spanning for P.

The next result shows that WG is self e-dual for a suitably chosen e.

Proposition 9. Let d be the degree vector of G. Then we have

Proof. According to the definition of rd we have

d(A) + r(V \ A) - r(V)
d(A) + lEI - int(A) - lEI
2 int(A) + extV\A (A) - int(A)
r(A).

D

From this we can get the following inequalities.

Proposition 10. For a connected graph G we have

::;II(d(v) + 1), and
vEY

1
< '2 IId(v).

vEY

Proof. From Lemma 1 we know that there is a bijection between the independent
vectors of (WG)d and the spanning vectors of WG which are subvectors of d.
Proposition 9 shows that this is in effect a bijection between the points in WG and
the spanning vectors of WG which are subvectors of d. Observe that if x E WG is
spanning then we have x E SG. Furthermore if x is integer then so is d - x. Thus
we have a bijection between WGand ({xE NÓ : x ::;d and x is spanning} \
W G) U SG. Twice the number of win vectors of G minus ISG I is therefore less
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than or equal to the number of integer subvectors of d.
The inequality for the volume follows from this bijection with the observation
that image and preimage overlap only in a set of measure zero. Their union is
contained in the box of lR'.~ having d as "upper right hand" corner. D

Both inequalities can be tight.

4. Random Generation of Win Vectors

Suppose we know or can estimate the probability p of a draw between each pair
of players and also assume that if it is not a draw each player has an equal
probability of winning. Then the probability of obtaining any particular win
vector w of G = (V, E) is given by

where Dw is the set of sub orientations which realise w.
For some graphs this probability measure will be uniform over the set of win
vectors of the same weight. For general graphs however it will be highly non
uniform over WG. Thus the "naive" approach for generating a win vector uni-
formly by randomly deleting edges and orienting the remaining ones randomly
is doomed to fail.
What is mildly curious is that with respect to this measure there is the following
interpretation of the expected number of win vectors of G.

Proposition 11. If G represents a fixture list in which each pair (i,j) joined
by an edge has independently probability p of producing a tie, then the expected
number of win vectors is given in terms of the Tutte polynomial T( G; x, y) by

Ep[IWGI] = (1 - p)IVI-1T (G; ~ = ~, 1) .

Proof. Given G = (V, E) then we have

Ep[IWGI] = L pIE\AI(l_ p)IAIISGIAI
ACE

since every edge not corresponding to a tie must be given an orientation. We
now use the following identity from [22]. For any e and any matroid M = (E, r)

L elAI (x - 1r(E)-r(A)T(MIA; x, y) = (e + l)IEI-r(E)er(E)T(M; x, Y)
ACE

where X-I = (x - 1)(e+ 1)/e and Y -1 = (y - l)e / (e + 1). Using the fact that
ISGIAI = T(M(GIA); 2,1) and defining x = 2, e = (1- p)/p, y = 1 then gives

Ep[IWGI] = (e + l)-r(E)er(E)T(G; 2 + l/e, 1).

When G is connected r(E) = WI- 1 and the result follows. D
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Note, when p = O Proposition 11 gives our earlier Proposition 7, since we are only
counting score vectors. However when p = 1/2 we get a new, somewhat strange
interpretation of T( G; 3, 1). Other consequences of the above follow from known
results of [7] and [1], namely,

Computing Ep[IWGI] exactly is #P-hard.
- There is a fully polynomial randomised approximation scheme which approx-

imates Ep[IWG I] to within a given ratio in poly time if G is dense.

Our approach to the random generation problem is different from the "naive"
one. First of all we are interested in obtaining a uniform or almost uniform
distribution. To do this we exploit the geometrical structure of WG and make
use of known methods for the almost uniform generation of points inside convex
polytopes. Throughout the rest of this section we assume that the graph G is
a-dense for some fixed a > O.
If U (-) is the uniform distribution over il then we call a probability distribution
Ir on a probability space with ground set il, é-uniform iff

1'2 L IIr(x) - U(x)1 ::; é

xEn

respectively, if il is not discrete,

~1 IIr(x) - U(x)1 ::; é.
2 xEn

Consider now the following algorithm.
Algorithm GEN:

1. Set b := Ian/21
2. Generate a point p almost uniformly at random in the blown up polytope

(1+ 1/b)WG'
3. Map p ---7 lpJ, the integer "bottom left hand corner" of the unit cube con-

taining p.
4. If lpJ belongs to WG then accept it as our lattice point and stop. If it lies

outside WG then repeat steps 2-4 for at most -log2(1 - e-2/a) times. Stop
with output "Fail" if still unsuccessful after that many repetitions.

We now claim

Theorem 1. For G a-dense, GEN generates win vectors é-uniformly at random
within time polynomial in nI/a and CI. The probability of GEN stopping with
output "Failli is smaller than 1/2.

We prove Theorem 1 by a series of lemmata. First we need to check that the
blown up polytope (1 + 1/b)WG contains all unit cubes which have nonempty
intersection with WG. Only then can we guarantee that all integer points of WG
are images of a unit cube in step 3. By Cl we denote the cube of side-length I in
lR'.~, in other words

Cl := {X : O ::; X ::; (l, l, ... , In e lR'.~.

Lemma 2. Cb ç WG, with b = an/2 as defined in step 1 ofGEN
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Proof. Suppose WG does not contain the point (b, ... , b). Then there exists some
subset U ç V for which the constraint LiEU Xi ::; r(U) is violated. In other
words

But

r(U) = ~ L u(i) + L(d(i) - u(i))
iEU iEU

where u( i) is the degree of vertex i within the subgraph of G induced by U.
Hence

r(U) = L d(i) - ~ L u(i) ?: ~ L d(i)
iEU iEU iEU

and since u( i) ::; d( i) we get

which is a contradiction. Thus WG contains (b, ... , b) and since WG is closed
under taking subvectors all of Cb. D

A lattice unit cube is a set C e lR'.~ for which there exists an integer lattice point
x E NV such that C = x + CI. Here "+" denotes the usual Minkowski sum.
Now we can show

Lemma 3. The blown up polytope (1+ 1/b)WG contains all lattice unit cubes
which have nonempty intersection with WG.

Proof. Suppose x is a point such that lx J E WG. Then x E WG+C1. By Lemma
2 we have that Cb E WG. Hence

and since CI ç (l/b)Cb

WG + CI ç WG + (l/b)Cb ç (1 + 1/b)WG'

Hence x E (1 + 1/b)WG as required. D

This shows that under the map of step 3 all integer points of WG receive the
same measure: exactly one unit volume segment of (1 + 1/b)WG . Therefore, if
we can generate a point in (1 + 1/b)WG almost uniformly at random then we
can do the same for the integer points in WG. But this generation in the blown
up polytope can be done in time O*(n5) by techniques of [12].
By the proof of Proposition 6 we know that checking membership in WG in step
4 reduces to an instance of the maximum flow problem and can thus be solved
in polynomial time.
It remains to be shown that the rejection probability of the generator is not too
high.

Lemma 4. The rejection probability at step 4 ofGEN is at most (1- e-2/a) and
the overall failure probability of GEN is less than 1/2.
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Proof. The probability of getting a lattice point inside WG at step 3 is at least

vol(WG)1 vol((l + 1/b)WG) = 1/(1 + 1/bt.

Now (1 + 1/b)bn/b ::; en/b. Hence we generate a lattice point inside WG with
probability of at least e-n/b. In order for this to be frequent enough for the
generator to have polynomial running time we need b E O (n). Here we have
b = an/2 and thus we get a success probability of at least e-2/a. By making
at most -log2(1- e-2/a) repetitions we can boost the success probability to at
least 1/2 as required. D

5. Approximating IWGI

From the proof of Proposition 6 we conclude that the membership problems
for WG and SG are poly time solvable. Since these sets are trivially nonempty
there is no obvious complexity theoretic reason why determining IWGI or ISGI
should be hard. For the problem of exactly determining ISGI it follows from [7]
that this problem is #P-complete. Furthermore Annan [2] proved that even in
the dense case there is no poly time algorithm which counts forests, and hence
score vectors, unless RP = NP. These results and the close connection between
SG and WG lead us to believe that counting win vectors is a computationally
difficult problem even for dense instances. We pose this as an open problem.

Problem 1. Is computing the number of win vectors of a graph #P-complete?

We now describe how to use the generator of the last section to approximate the
number of win vectors of G. To do this we reduce the problem of approximately
counting win vectors to that of randomly generating them and then use a well
known ratio reduction technique. We write

I
TXl 1- IWGI IWG+e,1 IWG+e,++e,_,1 IW IvVG - X X ... x X K,

IWG+e,I IWG+e,+e21 IWKni n

where {el, ... ,ez} = E(Kn) \E(G). We note that all graphs in this reduction
chain are at least a-dense.
From Example 3 we have a formula for IWKn I which is computable in time
polynomial in n. Knowing IWKn I and having good approximations for the ratios
will then yield a good approximation of IW GI with high probability.
To approximate the ratios

ri := IWG+e,+ ...+ei I/IWG+e,+ ...+ei+,1

we interpret them as the expectation of the indicator function

Ii(x) := { 6 X E W G+e, + ..+ei n W G+e, + ..·+ei+'
otherwise

under the uniform distribution. Then we have ri = E [Ii] = Prob [{Ii = I}].
For each 1 ::; i ::;I we will use GEN to draw a sample of t = i198lc21 inde-
pendent win vectors {Xl, ... ,xd from an (é/121)-uniform distribution Jri over
W G+e, + ..·+ei+" The non-uniformity will introduce a bias in the estimation and
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we therefore define ri := E1f[Ii]. We use the sample to compute an estimate for
ri by Xi := (Ii (Xl) + ... + Ii(xtf)lt.
Our final estimate for IWGI will then be W:= IWKni rt=1 Xi.
We prove the correctness of this approach by a series of lemmata. First we
address the problem of bias of ri which arises since we cannot sample uniformly
from WG.

Lemma 5. If'Tri is (é/121)-uniform over WG+e,++ei+' then we have (1 -
é/41)ri ::; Fi ::; (1+ él 41)ri.

Proof. Since Ii is Oil-valued (é/121)-uniformity yields ir; - Fil::; é/121. As we
show below we have that ri ?: 1/3. Thus é/121 ?: ir; - Fil = rill - Fi/ril ?:
(1/3)11 - Fi/ril which is equivalent to (1 - é/41)ri ::; Fi. The other inequality
follows as easily. D

We next prove the bound used in the last proof.

Lemma 6. For e 'I. E we have IWGI< IWG+el ::; 3IWGI.

Proof. The first inequality is obvious. The second inequality follows from the
observation that for every win vector x of G we can add e in two different
orientations to a realising orientation of x thus obtaining at most two different
win vectors of G + e. Accounting for x as well this then gives at most three
win vectors of G + e for each win vector of G. This inequality can be tight, for
example if e is an edge between two isolated vertices of G. D

Next we show that W has got the right expectation.

Lemma 7. (1- é/3)IWGI ::; E [W] ::; (1+ é/3)IWGI.

Proof. We have E [W] = rt=1 E [Xi] = rt=1 ri. The claim now follows from
the bounds in Lemma 5 together with the observation that for O ::; é ::; 1 we
have that eE

/
4 ::; 1 + é/3 and (1 - (/4)1 ?: (1 - é/3). D

And finally we show that with high probability W is close to its expectation.

Lemma 8. With probability larger than 3/4 we have (1- é)IWGI ::; W::; (1 +
é)IWGI·

Proof. By Chebychev's inequality we have

~ ~ ~ 9 Var [W] 1
Prob [lW - E [W]I > (é/3)E [W]] < 2' ~ < -

- é (E [W])2 - 4

provided we can show Var [W]/(E [W])2 ::; é2/36. Write

Var [W]
(E [W])2

E [W2] - (E [W])2
(E [W])2

III((E [Xi])2 + E [Xl] - (E [Xi])2) _
i=1 (E [Xi])2 1

I

II( Var [Xi] )
i=1 1 + (E [Xi])2 - 1. (2)
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Now we have E [Xi] = E [Ii] = ri and Var [Xi] = Var [Ii]lt ::; E [Ii]lt = ri/t
since Var [Ii] takes values in (0,1). Using Lemma 5 we get 2ri ?: ri and with
Lemma 6 this yields Var [Xi]/(E [Xi])2 ::; 61t. Therefore we have the required
bound

Var [W]
(E [W])2 (1+~Y-1

< e61/t _ 1= e,2/36 - 1
< é

2/36.

<

Thus with probability at least 3/4 we have that W is (1 ± é/3)-close to E [W].
Combining this with Lemma 7 we arrive at the claim of the lemma. D

Summarising we finally have

Theorem 2. For an a-dense graph G we can approximate IWGI to within
ratio (1 ± é) with probability at least 314 by using at most 119812 C 21 =
O(n4c2)samples from GEN.

Thus, having established polynomial running time for GEN above, the overall
running time for this approximation scheme will be polynomial, too.

6. Conclusion

As shown above, the collection of win vectors can be regarded as a polymatroid
analogue of the score vectors. They are in bijective correspondence with the inte-
gral independent vectors of a very natural polymatroid defined on graphs, in the
same way as score vectors are in bijective correspondence with the independent
sets of the cycle matroid of a graph. It seems plausible that our techniques would
also give an approximation scheme for the number of score vectors by putting
disjoint balls of uniform size around the lattice points in the basepolytape. It is
somewhat curious that though using a completely different approach in our ap-
proximation scheme, we have again needed the same density condition as Annan
[2] and Alan et al. [1] needed in theirs for the number afforests (= independent
sets of the cycle matroid) and other evaluations of the Tutte polynomial of a
graph. Finding new approaches which would allow these density conditions to
be discarded is an important and challenging area for further research.
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